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Accurate estimation of snowpack is vital in many parts of the world for both water management and
flood prediction. Temperature-index (TI) snowmelt models are commonly used for this purpose due to
their simplicity and low data requirements. Although TI models work well within lumped watershed
models, their reliance on air temperature (and potentially an assumed lapse rate) as the only external dri-
ver of snowmelt limits their ability to accurately simulate the spatial distribution of snowpack and thus
the timing of snowmelt. This limitation significantly reduces the utility of the TI approach in distributed
hydrologic models because spatial variability within the watershed, including snowpack and snowmelt,
is usually the primary reason for selecting a distributed model. In this paper, a new radiation-derived
temperature index (RTI) approach is presented that uses a spatially-varying proxy temperature in place
of air temperature within the TI model of the fully-distributed Gridded Surface Subsurface Hydrologic
Analysis (GSSHA) watershed model. The RTI is derived from a radiation balance and includes spatial
heterogeneity in both shortwave and longwave radiation. Thus, the RTI accounts for more local variation
in the available energy than air temperature alone. The RTI model in GSSHA is tested at the Senator Beck
basin in southwestern Colorado where observations for snow water equivalent (SWE) and LandSat-
derived images of snow cover area (SCA) are available. The TI and RTI approaches produce similar SWE
estimates at two non-forested and relatively flat sites with SWE observations. However, the two models
can produce very different SWE values at sites with forests or topographic slopes, which leads to signif-
icant differences in the basin-wide SWE values of the two models. Furthermore, the RTI model provides
better basin-wide SCA estimates than the TI model in 75% of the LandSat images analyzed.

Published by Elsevier B.V.
1. Introduction

Snow accumulation and ablation are important hydrologic pro-
cesses in the western United States as well as many other regions
of the world. For example, Barros and Lettenmaier (1993) esti-
mated that snowmelt from headwater catchments that compose
less than 25% of the total land area provide approximately 70% of
the annual runoff in the western United States. Wahl (1992) esti-
mated runoff from snowmelt contributes 50% to 80% of the annual
downstream water supply. While the volume of water held within
the snowpack is important, the timing of the release of water from
the snowpack is also important for flood protection as well as
agricultural and municipal water supplies. Furthermore, accurate
estimation of the spatial pattern of snowpack is vital to determin-
ing the seasonal volume of snow water equivalent (SWE) and the
shape, peak, and duration of the basin outflow due to snowmelt
(Luce et al., 1998; Pomeroy et al., 2009).

Snow accumulation and melt are both driven by the fundamen-
tal laws of conservation of mass and energy. As described in
Aguado (1985), the majority of studies indicate that net radiation
is the primary source of energy for snowmelt, while turbulent heat
transfer is of secondary importance. Spatial variations in net radi-
ation due to cloud cover (Aguado, 1985; Sicart et al., 2006), sun
position, topography (Blöschl et al., 1991; Kirnbauer et al., 1994),
and vegetation result in heterogeneous snow accumulation and
melt patterns throughout a basin. For example, Jost et al. (2007)
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found that elevation, forest cover, and aspect explain most of the
large-scale variability in snowpack within a watershed in the
Kootenay Mountains in southeastern British Columbia, Canada.
Adequately simulating the accumulation and ablation processes
within snow models, including spatial variability (e.g. forested
and non-forested), is currently of much interest, as evidenced by
the Snow Model Intercomparison Projects (SnowMIP 1 and 2)
(Etchevers et al., 2004; Essery et al., 2009).

Water managers, hydrologists, and engineers commonly utilize
numerical models to estimate the volume of SWE in headwater
areas in order to plan for operations of reservoirs and other water
control structures. One such model is the Gridded Surface Subsur-
face Hydrologic Analysis (GSSHA) model (Downer and Ogden,
2004), which has been widely-used for various military, civilian,
and research applications (Downer et al., 2006; Sharif et al.,
2010; Wright et al., 2014). GSSHA is a fully-distributed hydrologic
model that simulates physically-based equations of mass and
energy conservation on a structured grid. For snowpack simula-
tion, the model can utilize either an energy-balance or a
temperature-index (TI) method (Follum and Downer, 2013), with
the TI model being based upon SNOW-17 (Anderson, 1973, 2006).
Energy-balance approaches can outperform TI models in repre-
senting the spatial heterogeneity of the snowpack (Kumar et al.,
2013), but suffer from the need for highly-accurate forcing data
(Lei et al., 2007) that are not available in most watersheds.
Large-scale energy balance models, such as the National Weather
Service’s Snow Data Assimilation (SNODAS) model (Carroll et al.,
2001; Barrett, 2003), simulate snow over the coterminous United
States but do so at a 1 km2 spatial resolution, which is coarser than
the resolution used in many distributed hydrologic models. TI
models are advantageous when forcing data are limited because
they require only precipitation and air temperature data as drivers.

TI snow models have long been used within hydrologic models
due to their simplicity of relating air temperature to snowmelt
through the use of a melt factor. In these models, air temperature
is used as an index (i.e. proxy) to determine the energy exchange
across the snow-air interface (Anderson, 2006), where air temper-
ature is typically estimated throughout the basin based on the local
topographic elevation and a specified lapse rate. The use of TI mod-
els within fully-distributed models has increased due to the avail-
ability of air temperature data and gridded elevation data (Daly
et al., 2000; Zeinivand and De Smedt, 2009; Jost et al., 2012;
Kumar et al., 2013). However, TI approaches typically do not
account for the effects of slope, aspect, and vegetation cover, which
have been shown to control snowpack and snowmelt patterns. It
has also led to inaccuracies when comparing simulated snowpack
to satellite-derived estimates of snow cover area (SCA), which are
often the only validation dataset available (Mhawej et al., 2014;
Vuyovich and Jacobs, 2011).

More recently, methods have been utilized to better account for
topographic and vegetative differences within TI models (Hock
(2003) provides a thorough overview). Simple approaches, such
as empirically adjusting the temperature based on aspect and the
location of forested areas, have had some success (Kang, 2005).
Other approaches use a melt factor that varies based on monthly
(Cazorzi and Fontana, 1996; Dunn and Colohan, 1999) or hourly
(Hock, 1999) radiation calculations over the discretized area.
Shamir and Georgakakos (2006) modified melt factors based on
the aspect of each cell in the model domain to simulate a dis-
tributed snowpack using a TI model. Another common method
(Brubaker et al., 1996; Bookhagen and Burbank, 2010; Kustas
et al., 1994; Molotch and Bales, 2006) is to separate the drivers
of melt into two terms. The first term estimates the melt due to
turbulent heat flux based on the melt factor and air temperature.
The second term converts a radiation amount to an amount of
melt. In this approach, the melt factor is only used to estimate melt
due to turbulent heat flux instead of the total melt. Butcher (2009)
incorporated this method into the SNOW-17 model (producing
SNOW-17 EB) but found that SNOW-17 outperformed SNOW-17
EB when deployed at the Reynolds Creek Experimental Watershed
in Idaho, USA. This result likely occurs because SNOW-17 EB
requires high-quality spatiotemporal forcing data (e.g., tempera-
ture, precipitation, cloud cover, relative humidity, shortwave radi-
ation, longwave radiation), which is an issue shared by full energy-
balance snow models (Franz et al., 2008).

The objective of this paper is to better account for spatial
heterogeneity of available energy within the GSSHA TI model while
preserving the strengths of this approach, particularly its limited
data requirements and widely-used mathematical structure. In TI
models, air temperature is used as a proxy for the energy available
for heating or melting the snowpack. This approach is relatively
successful due to the high correlation between air temperature
and energy balance components (Ohmura, 2001). In this paper,
we propose an alternative proxy temperature that is derived from
the radiation balance including simple calculations of the net
shortwave radiation (which includes the effects of topography,
clouds, vegetation, and albedo) and net longwave radiation (which
includes contributions from the air, vegetation, cloud cover, and
approximate snow temperature). This radiation-derived tempera-
ture index (RTI) approach is explored because radiation is typically
the primary driver of snowmelt in many locations, data are avail-
able to incorporate spatial variations in the components of the
radiation balance (and thus the RTI), and this approach retains
the widely-used TI model structure.
2. Methodology

2.1. Existing GSSHA TI model

The existing TI model in GSSHA (from now on, referred to as TI)
is based on SNOW-17 (Anderson, 1973, 2006) and was imple-
mented into GSSHA by Follum and Downer (2013). SNOW-17 is
typically operated by the National Weather Service using a time
step (dt) of 6 h but can be used at various time intervals
(Anderson, 2006). GSSHA allows for a variable time step for various
processes (e.g., flow routing, infiltration, and evaporation), but it
uses an hourly time step for snow simulation. In the TI model, pre-
cipitation (P) in each cell is considered to fall as snow when
Ta 6 PXTEMP, where Ta is the air temperature (�C) and PXTEMP
is the temperature (�C) at which precipitation is considered snow.
An under-catch adjustment factor (SCF) can be used to account for
inaccuracies in precipitation data (Anderson, 2006). Each cell
of the GSSHA model can have varying values of Ta and P, and
therefore each cell can accumulate and melt snow independently
from the surrounding cells.

The change in heat deficit (DDt , mm of SWE) within the snow-
pack due to differences between the temperature of the air and
snow surface is accounted for as:

DDt ¼ NMF � ðATI� TsurÞ ð1Þ
where ATI is the antecedent temperature index (�C) (as calculated in
Anderson (2006)), Tsur is the snow surface temperature (as in
Anderson (2006), Tsur is assumed to be equal to Ta or 0 �C, which-
ever is less), and NMF is the negative melt factor (mm �C�1 dt�1).
NMF is calculated as:

NMF ¼ NMFmax � ðdt=6Þ � ðMf =Mf ;maxÞ ð2Þ
where NMFmax is the maximum negative melt factor (mm �C�1

(6 h)�1), Mf is the melt factor (mm �C�1 dt�1), and Mf ;max is the
maximum melt factor (mm �C�1 (6 h)�1), which is usually cali-
brated. An additional calibration parameter, TIPM, is included in



Fig. 1. Radiation components included in the proxy temperatures Ta and Trad.
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the calculation of ATI and ranges between 0.0 and 1.0 (Anderson,
2006). The change in heat deficit due to snowfall is also accounted
for within the TI model using the approach from Anderson (2006).

Melt occurs once the energy input into the snowpack over-
comes the heat deficit. When little or no rain occurs (less than
1.5 mm during the previous 6 h), the amount of melt in a time step
is calculated as:

M ¼ ½Mf � ðTa �MBASEÞ þ 0:0125 � P � f r � Tr � � dt ð3Þ
where M is the melt in mm, P is in mm, MBASE is the temperature
above which snow begins to melt (typically set to 0 �C), f r is the
fraction of precipitation in the form of rain when Ta > 0 �C, and Tr

is the precipitation temperature in �C (taken as equal to Ta or
0 �C, whichever is greater). The melt factor is calculated as:

Mf ¼ ðdt=6Þ � ½Sv � Av � ðMf ;max �Mf ;minÞ þMf ;min� ð4Þ
where Sv is a sine curve that accounts for seasonal melt variation, Av
is a seasonal melt variation adjustment (for the Northern Hemi-
sphere, it is set to 1.0 when lower than 54�N latitude, and it varies
linearly between 0.0 and 1.0 as a function of time of year when
above 54�N latitude), andMf ;min is a calibrated minimummelt factor
(mm �C�1 (6 h)�1). Using Sv and Av , the model varies Mf seasonally
between Mf ;min and Mf ;max, which empirically accounts for the sea-
sonal variations in solar radiation and snow albedo.

When at least 1.5 mm of rainfall occurs during the previous 6 h
an energy balance is used to calculate the amount of snowmelt
with the assumption that snow surface temperature is 0 �C, incom-
ing solar radiation is negligible, and incoming longwave radiation
is equal to black body radiation (Anderson, 2006):

M ¼ r � dt � ½ðTa þ 273Þ4 � 2734� þ 0:0125 � P � f r � Tr þ 8:5 � f u
� ðdt=6Þ � ½ðrh � esat � 6:11Þ þ 0:00057 � Pa � Ta� ð5Þ

where r is the Stefan–Boltzmann Constant (6.12 � 10�10 mm K�1 -
h�1), f u is the average wind function (mm mb�1 (6 h)�1), rh is the
relative humidity (assumed to be 0.9 during rain-on-snow events)
(Anderson, 1973, 2006), Pa is atmospheric pressure (mb, calculated
based on elevation) (Anderson, 2006), and esat is the saturated vapor
pressure (mb, calculated based on Smith, 1993). Water leaves the
snowpack when the liquid water content exceeds the liquid holding
capacity, which is calculated as a calibrated percentage (PLWHC) of
the ice portion of the snow cover (Anderson, 2006).

2.2. New GSSHA RTI model

In the RTI model, a radiation-derived temperature (Trad, �C)
replaces Ta in the equations that are used to calculate snowmelt
(Eqs. (3) and (5)), while rainfall and snowfall continue to be distin-
guished using Ta. Trad is calculated based on a radiation balance at
the surface of the snowpack. If one neglects all terms in the snow
surface energy balance aside from radiation, one can write:

LW" ¼ SW#;net þ LW# ð6Þ
where LW" is outgoing longwave radiation, SW#;net is the net short-
wave radiation, and LW# is the downwelling longwave radiation.
Eq. (6) neglects any advected heat from precipitation, ground heat
flux, sensible heat flux, latent heat flux, heat lost from melt water
leaving the snowpack, or changes in the thermal energy of the
snowpack (i.e. heat deficit). Using the Stefan–Boltzmann Law to
relate the radiated energy to temperature, one can calculate an esti-
mate of the snow surface temperature, which is Trad (�C), as:

Trad ¼ LW# þ SW#;net
esnowr

� �1=4
� 273:15 ð7Þ

where all radiation terms are in units of Wm�2, esnow is the emissiv-
ity of snow (assumed to be 1.0), and r is the Stefan–Boltzmann con-
stant (approximated as 5.6704 � 10�8 W m�2 K�4). Trad is not
expected to represent the actual temperature of the snow surface
because of the assumptions described earlier. In addition, the calcu-
lation of Trad does not consider the ice/water phase transition, so
Trad can exceed 0 �C. Instead, Trad is interpreted as an index of energy
that is available to heat or melt the snowpack. Although it is sim-
plistic, this approach considers more elements of the energy bal-
ance than the TI model. Ta in the TI model is only directly
associated with the downwelling longwave radiation from the air
(LW#;air), which is a component of LW# (LW# includes longwave con-
tributions from the air, canopy, and cloud cover). Trad in the RTI
model considers both SW#;net and LW# (Fig. 1).

Methods were selected to calculate SW#;net and LW# that intro-
duce as few parameters and data requirements as possible. LW# is
determined by first calculating the downwelling longwave radia-
tion at the top of canopy (LW#;toc), which includes longwave radia-
tion from the air and clouds. Neglecting the impact of the
surrounding terrain on LW#, GSSHA (Downer and Ogden, 2006)
uses methods developed and tested by TVA (1972) to estimate
LW#;toc as:

LW#;toc ¼ reaðTa þ 273:15Þ4 � ð1:0þ 0:17N2Þ ð8Þ
where ea is the air emissivity, and N is the fractional cloud cover.
Various methods are available for calculating ea (TVA, 1972; Idso,
1981; Prata, 1996), but they often require additional data such as
relative humidity. To keep the forcing data requirements low, ea is
estimated as 0.757 when snow is present (Bras, 1990). Ta is linearly
adjusted for local variation in elevation based on Bras (1990):

Ta ¼ Tg þ hðElevg � ElevcÞ ð9Þ
where Tg is the measured air temperature at a gage (�C), h is a pos-
itive lapse rate (�C m�1), and Elevg and Elevc are the elevations of
the temperature gage and the cell of interest (m), respectively. Fol-
lowing the parsimonious approach of Liston and Elder (2006), the
incident longwave radiation at the snow surface (LW#) can then
be estimated as:

LW# ¼ LW#;tocð1� FcÞ þ FcecrðTcanopy þ 273:15Þ4 ð10Þ
where Tcanopy is the canopy temperature (�C) (assumed equal to the
air temperature following DeWalle and Rango, 2008), ec is the
canopy emissivity (assumed equal to 1 following Sicart et al.,
2004), and Fc is the fractional canopy cover, which is 0 if no forest
is present. Otherwise, Fc is estimated as (Liston and Elder, 2006):

Fc ¼ f a þ f b lnðLAIÞ ð11Þ
where f a and f b are set to 0.55 and 0.29, respectively (Pomeroy
et al., 2002), and LAI is the leaf area index within the cell. LAI data
are required for the RTI model but not the TI model. However, LAI is
already used to estimate the canopy resistance for evapotranspira-
tion calculations in GSSHA, so it is not a new data requirement for
the model as a whole. Liston and Elder (2006) also provides a table
of LAI values for tree types that are common in cold climates.

The amount of downwelling shortwave radiation that is
absorbed by the snow surface is:

SW#;net ¼ ð1� aÞSW# ð12Þ



Fig. 2. Two-dimensional representation of the reduction in SW# due to the angle of
incidence (u) between the sun and the normal vector of the terrain. The TI model
does not account for this reduction in SW# . The RTI model calculates the reduction
in three-dimensional space.
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where SW# is the incident shortwave radiation and a is the albedo
of the snowpack. Measurements of SW# are rarely available, and if
available, they are typically from a single location. Therefore, SW#
for each grid cell is estimated:

SW# ¼ S0KrKatmKcKvKsKt ð13Þ
where S0 is the solar constant (1366Wm�2 from Liou, 2002) and
the K factors are the reductions in the shortwave radiation due to
distance from the earth to the sun (Kr), atmospheric scattering
(Katm), absorption by clouds (Kc), vegetation (Kv), slope/aspect of
terrain (Ks), and topographic shading (Kt).

The adjustment Kr accounts for the effects of the distance from
the sun based on the Julian day (JD) (TVA, 1972):

Kr ¼ 1:0þ 0:017 cos
2p
365

ð186� JDÞ
� �� ��2

ð14Þ

The reduction in shortwave radiation due to atmospheric thickness
as well as aerosols and moisture (Katm) is estimated for each cell
based on its elevation (Allen et al., 2005):

Katm ¼ 0:75þ ð2 � 10�5Þ � Elevc ð15Þ
Other methods of calculating Katm are available (e.g., Eagleson,
1970; Bras, 1990; Shuttleworth, 1993), but they require additional
parameters or data. The reduction in shortwave radiation (Kc) due
to absorption and reflection by clouds is determined as (TVA, 1972):

Kc ¼ 1:0� 0:65N2 ð16Þ
where N is the fractional cloud cover. Other methods have been
suggested for estimating the effects of clouds on SW# (see
DeWalle and Rango, 2008), but the TVA (1972) method was selected
to be consistent with the source used for calculation of LW#.

The reduction in shortwave radiation reaching the ground sur-
face due to vegetation (Kv ) is set equal to the vegetation transmis-
sion coefficient, a parameter that is vegetation-type specific and
represents a fraction of the shortwave radiation that is not inter-
cepted by the vegetation canopy (see Bras, 1990). The vegetation
transmission coefficient is a standard input for evaporation calcu-
lations within GSSHA, and has values ranging between 0 for com-
plete canopy coverage and 1 for no canopy coverage.

The solar radiation emitted from the sun rarely strikes the land
surface at a perpendicular angle, which results in a reduction (Ks)
in the incident shortwave radiation per unit area. Ks can be calcu-
lated based on the angle of incidence (u), which is the angle
between the solar beam on the surface and a vector that is normal
to that surface (Fig. 2). Duffie and Beckman (1980) calculate u
using the latitude, slope, and azimuth angle of the grid cell, and
the solar declination (Shuttleworth, 1993) and hour (Duffie and
Beckman, 1980) angles. Ks is then calculated as

Ks ¼ cosðuÞ ð17Þ
Direct solar radiation can also be blocked by nearby topography,

such as when mountains shade valleys. This effect is represented
by Kt . Hourly values of solar azimuth (Duffie and Beckman, 1980)
and solar elevation angles (Eagleson, 1970) are calculated and used
in combination with geometry of the topography to determine if
any cell within the simulation domain blocks the direct line
between the solar location and the cell surface. If the sun is blocked
during an hour, then Kt is set to 0.0 for that hour (indicating com-
plete shading). Otherwise, Kt is set to 1.0 (indicating no shading).
This approach is similar to that of the GEOTOP model (Zanotti
et al., 2004).

Most equations used to calculate snow albedo (a) assume that a
gradually declines over time and then suddenly increases when
fresh snow falls on the snowpack. A summary of different methods
used to calculate a can be found in DeWalle and Rango (2008).
Here, daily values of snow albedo (a) are computed based on the
number of days since the last snowfall (d) following Henneman
and Stefan (1999). For periods when no melt is occurring, a for
the current day (t) is:

at ¼ 0:83� 0:011 � d ð18Þ
When melt is occurring:

at ¼ at�1 �w ð19Þ
where w is 0.17 if the average daily temperature is above 0 �C, and
0.013 when it is not. The minimum allowed value for a is 0.38. This
albedo model does not account for dust or other particulates, which
can have important effects on snow ablation (Painter et al., 2007;
Skiles et al., 2012, 2015). However, the RTI model can potentially
include dust impacts in the future by adjusting a, whereas the TI
model does not directly consider the albedo.

3. Model application

3.1. Study area

The TI and RTI snow models in GSSHA are tested at the 2.9 km2

Senator Beck Basin (SBB) in southwestern Colorado. The study per-
iod is 1 July 2006 through 30 September 2012, which is approxi-
mately water year (WY) 2007 through WY 2012. The SBB is in
the Ouray Ranger District of the Uncompahgre National Forest in
the western San Juan Mountains (Fig. 3). It is located at 37� 54’
24.800 N � 107� 43’ 34.600 W and has an elevation range from



Fig. 3. SBB, Colorado, USA. Land cover classifications are from the 2006 National Land Cover Database and are overlain on United States Geological Survey 1-m orthoimagery
data. Elevation contours (50 m) are from the 1/3-arc-second National Elevation Dataset. Sites considered in this study are shown by black symbols and colored stars. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3362 m to 4118 m. The basin is primarily alpine terrain with bare
rock and tundra as well as some forested areas below 3600 m. It is
extensively gaged for both hydrometeorology and hydrology by
the Center for Snow and Avalanche Studies. Additional basin infor-
mation and data are provided by Landry et al. (2014).

The Swamp Angel Study Plot (SASP) and Senator Beck Study Plot
(SBSP) are monitored within the basin. SASP has a lower elevation
(3371 m) and is located in a large forest clearing with surrounding
terrain that provides shelter from wind effects on precipitation
and snowpack measurements. SBSP is a more-exposed and higher-
elevation site (3714 m) that is located in alpine tundra where the
effects of wind are more prevalent. Temperature, shortwave radia-
tion, longwave radiation, and snowdepth data are available for SASP
and SBSP (Fig. 3), but precipitation data are only available for SASP.

The Center for Snow and Avalanche Studies uses formal snow
cover profiles adjacent to the SASP and SBSP sites to measure
SWE, snow depth, and snow density. Measurements are taken
monthly in the early winter and weekly during the late winter
and spring at SASP, and they are taken as feasible at SBSP. As dis-
cussed in Skiles et al. (2012), measurements of SWE are taken sev-
eral meters away from the SBSP weather station and may not
reflect the SWE exactly at the weather station site. Therefore,
rather than using the SWE measurements from the snow cover
profiles, the densities from the snow cover profiles are used with
automated depth measurements at the SBSP weather station to
determine more accurate SWE estimates at the SBSP weather sta-
tion site itself (Skiles et al., 2012). For consistency, the same
approach is used at SASP, but the differences are smaller at this
site. These SWE estimates will be used throughout this study.
3.2. Additional comparative snow data

The SNow THERmal Model (SNTHERM; Jordan, 1991) was previ-
ously used to model the SWE at SASP and SBSP (Landry et al.,
2014). Thus, the TI and RTI results can be compared to a multilayer
energy-balance snow model, which is based on the mass and
energy balance model by Anderson (1976). It should be noted,
however, that the SNTHERM parameters were not calibrated but
set to published values in those simulations.

To supplement the data from the SBSP and SASP sites, LandSat 5
imagery was used to derive snow cover area (SCA) maps of the
basin. LandSat 5 includes six spectral bands (blue, green, red,
near-infrared, and two shortwave infrared) at a 30 m resolution,
which create unique spectral signatures that can be used in the
mapping of snow cover within a basin (Dozier and Marks, 1987).
The Iterative Self-Organizing Data Analysis Techniques (ISODATA)
(Ball and Hall, 1965; Tou and Gonzalez, 1974) within the ERDAS
(1999) software was used to group pixels with similar spectral sig-
natures into thematic classes, which were then assigned a designa-
tion as snow, no-snow, or snow fringe based on the ISODATA
thematic classes and visual interpretation of the classes compared
to orthoimagery. Snow fringe was defined as the transition
between the snow/no-snow classes and likely represents partial
snow coverage within the pixel. In total, 32 LandSat images are
available for the study period, but most images were collected
when the snow cover was either absent or nearly complete, which
greatly reduces their value for testing the models. Thus, only 12
images were used in the study, all of which indicate between
25% and 75% coverage of snow within the basin.
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3.3. Model forcing data

The Watershed Modeling System (Aquaveo, 2013) was used to
develop a 30-m structured grid for GSSHA. This resolution was
judged to adequately capture the spatial heterogeneity of the basin
while remaining computationally efficient. The basin was delin-
eated using the 1/3-arc-second (�9 m) National Elevation Dataset
(Gesch et al., 2002), and elevation data were then mapped onto
the structured grid of the basin, which contains 3207 grid cells.

Land cover classifications were derived from the 2006 National
Land Cover Database (Fry et al., 2011). Approximately 62.1% of the
basin is classified as grass/herb, 27.2% as barren land, 9.4% as ever-
green forest, 0.3% as deciduous forest, and 1.1% as wooded wet-
lands (Fig. 3). Comparisons between the land cover map and
United States Geological Survey 1-m orthoimagery data (from 28
May 2014) show that the wooded wetlands are actually grass/herb
and were therefore reclassified.

The precipitation data from SASP are assumed to apply to the
entire SBB. Although the basin is relatively small, the topographic
relief likely produces uncaptured variations in precipitation. The
temperature data from SASP and SBSP were used to calculate
hourly values of lapse rate, which was restricted to the range from
0.0 to 0.00981 �C m�1 to avoid occasional anomalous temperature
patterns. Once the lapse rate was determined, the temperature for
each grid cell was calculated relative to SBSP using Eq. (9). Cold air
drainage from higher elevations into the sheltered terrain pocket at
SASP does occur, which sometimes causes colder overnight low
temperatures at SASP than SBSP (Landry et al., 2014). This negative
lapse rate is assumed to be local to the SASP terrain pocket and not
representative of the temperature profile throughout the majority
of the basin and therefore neglected in the model. Satellite-derived
and locally observed cloud cover data are available from the
National Centers for Environmental Information (NCEI, https://
www.ncdc.noaa.gov/). Observed cloud cover measurements, which
vary in temporal resolution, are often taken at airports as part of
the local climatological data archived at the NCEI. These surface
aviation cloud cover data are available throughout the day and
night from the Telluride Regional Airport (TEX), which is approxi-
mately 16 km to the northwest of SBB. This dataset consists of five
classifications of cloud cover. Each classification is associated with
a range of eighths (or oktas) of the sky that are covered by clouds
(e.g., the scattered clouds classification ranges from 3 to 4 oktas).
Based on the range of each classification, we determined cloud
cover percentages as follows: clear (CLR) – 0%, few clouds (FEW)
– 12.5%, scattered clouds (SCT) – 43.75%, broken sky (BKN) –
75%, and overcast (OVC) – 100%. When multiple classifications
were recorded for the same time period the average of the associ-
ated percentages was used. The cloud cover was measured at irreg-
ular time intervals, but was interpolated to produce hourly data for
this project. Cloud cover data are not available from 08 April 2009
through 11 November 2009, which provides an opportunity to
Table 1
Allowable range, starting value, and calibrated values for the TI and RTI model parameters
The sensitivity ranking for each parameter is shown in parentheses.

Parameter Units Allowable range

Mf ;max mm �C�1 (6 h)�1 0.001–2.400
Mf ;min mm �C�1 (6 h)�1 0.001–0.800
Mf mm �C�1 (6 h)�1 0.001–2.400
NMFmax mm �C�1 (6 h)�1 0.001–2.400
f u mm mb�1 (6 h)�1 0.001–1.000
TIPM Fraction 0.001–1.000
PLWHC Fraction 0.001–0.100
Kv ;deciduous Fraction 0.001–1.000
Kv ;evergreen Fraction 0.001–1.000
investigate the importance of this data (recall that the TI model
does not require cloud cover data, while the RTI model does). For
this period, the cloud cover values were determined by randomly
sampling the observations from the same day and hour during
the other years in the dataset. This approach aims to capture real-
istic variations in cloud cover, but it is not expected to reproduce
the actual cloud cover in 2009. The effects of this approach will
be examined later.

3.4. Parameter estimation and calibration

The Model-Independent Parameter Estimation and Uncertainly
Analysis (PEST) method (Doherty et al., 1994) was used to calibrate
the parameters within the TI and RTI models. PEST is a nonlinear
parameter estimator that calibrates numerous parameters simulta-
neously to produce the best fit between observed and simulated
results. In this study, the TI and RTI models were calibrated to
reproduce SCA, which characterizes the extent of snowpack across
the watershed (not the SWE observations, which are available only
at a few points). In particular, the error between the model and the
observations is calculated:

Error ¼ Aover þ Aunder

Aobs
ð20Þ

where Aover is area where the model predicts snow cover but no
snow is observed, Aunder is the area where the model predicts no
snow cover but snow is observed, and Aobs is the total observed
SCA. An error value of 0 indicates perfect fit between simulated
and observed SCA. In this comparison, cells that are classified as
snow-fringe from the LandSat analysis are considered snow. The
six LandSat SCA estimates from the first three water years (1 July
2006 through 30 September 2009) were used as the calibration per-
iod, and the remaining six SCA estimates from the last three water
years were used as the validation period.

The allowable range, starting value, calibrated value, and sensi-
tivity ranking of each parameter for the TI and RTI models are
shown in Table 1. Precipitation and temperature data are expected
to be accurate at SBB, therefore the SCF and MBASE parameters
were assigned to their default values of 1.0 and 0 �C, respectively,
and not calibrated. PXTEMP was also set to 0 �C. The lower limit
of the calibration limit was set to 0.001 for all other parameters,
with the starting value being approximately the average of the
allowable range. The upper limit of the allowable range for TIPM
was set based on physical ranges from Anderson (2006), while
the upper limit for PLWHC was set to 0.1 based on typical values
found in the field (Singh et al., 1997; Gerdel, 1954). The upper lim-
its forMf ;min andMf ;max were set to double their approximate values
within the conterminous United States from Anderson (2006). The
physical range of Kv is between 0.0 and 1.0, but only Kv values for
deciduous trees (Kv ;deciduous) and evergreen trees (Kv ;evergreen) are
used as calibration parameters. The starting value for both
using PEST. Dashes indicate parameters that are not required in the associated model.

Starting value TI RTI

1.200 1.103 (1st) –
0.400 0.800 (2nd) –
0.800 – 0.469 (1st)
1.200 1.794 (5th) 2.215 (3rd)
0.500 0.500 (6th) 0.500 (5th)
0.500 1.000 (3rd) 0.100 (2nd)
0.050 0.033 (4th) 0.050 (5th)
0.400 – 0.400 (5th)
0.400 – 1.000 (4th)

https://www.ncdc.noaa.gov/
https://www.ncdc.noaa.gov/


Fig. 4. Ratio of Mf to Mf ;max (used in TI model) compared to the ratio of SW#;day noon

to SW#;year noon (used in RTI model). These ratios are used in their respective models
to account for seasonal changes in the calculation of DDt.
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Kv ;deciduous and Kv ;evergreen was set to 0.4 based on USACE (1956) and
an estimated 25% fractional vegetation cover in the forested areas
of SBB. Due to the sparse and patchy vegetation in other land cover
classifications as well as the tendency of snow to cover all vegeta-
tion except for trees in SBB, Kv for all other classifications was set
to 1.0.

Recall that the original TI model partially accounted for sea-
sonal changes to a and SW# by empirically varying Mf with time.
Because both a and SW# are now incorporated into the RTI model
and vary seasonally, Mf is assumed to remain constant in the RTI
model. The original TI model uses the ratio of Mf to Mf ;max to indi-
rectly account for seasonal changes in the calculation of DDt (Eqs.
(1) and (2)). BecauseMf is constant in the RTI model, the RTI model
instead accounts for seasonal changes in DDt by replacing the pre-
vious ratio with the ratio of SW#;day;noon to SW#;year;noon, where
SW#;day;noon is the shortwave radiation at noon on a flat surface
for the day of interest and SW#;year;noon is the maximum shortwave
radiation at noon on a flat surface over the entire year. Calculation
of SW#;day;noon and SW#;year;noon only requires S0, Ks, Kr , and Katm,
which are already used by the RTI model. Using common
values of 1.2 for Mf ;max and 0.4 for Mf ;min (Anderson, 2006), the
ratios Mf /Mf ;max and SW#;day noon/SW#;year noon are compared in
Fig. 4 for SBB during the year 2008. Although not exact, the ratio
of SW#;day noon/SW#;year noon resembles the ratio of Mf /Mf ;max, indicat-
ing that seasonal changes are still included in the calculation of DDt

within the RTI model. These modifications in the RTI model replace
the need to calibrate both Mf ;min and Mf ;max with only Mf .

PEST indicates that the parameters related to melt factors are
the most sensitive in both the TI (Mf ;min and Mf ;max parameters)
and RTI (Mf parameter) simulations (Table 1). Kv ;evergreen in the
RTI model calibrates to 1.000, essentially nullifying any reduction
in shortwave radiation due to canopy cover from evergreen trees.
The model is insensitive to Kv ;deciduous likely due to the relatively
small area (0.3% of basin) that is classified as deciduous forest,
and Kv ;deciduous calibrates to a value of 0.400 (the starting value).
4. Results and discussion

The results of the TI and RTI models were analyzed in three
ways: (1) comparison to observations at SASP and SBSP, (2) com-
parison of SWE at four selected locations with similar elevations
but differences in aspect and vegetation cover, and (3) comparison
of SCA and SWE patterns over the entire basin.
4.1. SASP and SBSP

One way to partially test the RTI model is to compare its esti-
mates of SW# and LW# to the observations at the SASP and SBSP
sites. When calculating SW# at these sites, Kv was set to 1.0, which
indicates no vegetation shading. Ks was calculated under the
assumption that the pyranometers are level. No parameters were
calibrated in the calculation of SW# or LW# at these sites, so the cal-
ibration and validation periods can be considered together. All
comparisons of SW# and LW# are made using hourly observation
and simulation data.

Fig. 5 shows the simulated and observed SW# and LW# over a
representative 7-day span in April 2011. The timing of the rise
and fall of SW# over the day is mostly well captured for the days
in this period. However, on cloud-free days (2nd and 3rd days),
the model underestimates SW# by approximately 10%. On the
other days when clouds are present, the model both underesti-
mates and overestimates SW#. The observed LW# values change lit-
tle in comparison with SW#, but higher values correspond to
periods with clouds. The model tends to overestimate LW# during
cloud-free days and underestimate when clouds are present.

Considering SW# for the entire simulation, the Nash–Sutcliffe
Efficiency (Nash and Sutcliffe, 1970) is 0.80 for both SASP and SBSP,
which suggests that the errors in the SW# estimates are rather
small relative to the variability of the observed SW# values. These
high efficiency values likely occur because the model continues to
estimate the timing of the rise and fall in SW# quite well in each
day. The root mean squared error (RMSE) is 133Wm�2 for SASP
and 129 Wm�2 for SBSP. At SASP, the RMSE is approximately
64% of the average observed SW# and 10% of the peak observed
SW#. At SBSP, the RMSE is approximately 61% of the average
observed SW# and 10% of the peak observed SW#. The RTI model
tends to overestimate values of SW# at both test plots with a mean
bias error (MBE) of 12.4 Wm�2 and 14.8 Wm�2 at SASP and SBSP,
respectively. These results imply that one or more of the reduction
factors in Equation (13) are set too high (thus increasing SW#).
Among the reduction factors, Katm is the most likely to be inaccu-
rate because it was originally developed for agricultural purposes.
A method described in Bras (1990) was also tested in which Katm

can be calculated based on a turbidity factor of the air and the solar
elevation angle. This method produced similar accuracy but tended
to underestimate SW# at both locations.

Comparisons between simulated and observed LW# are only
made when snow is present. RMSE at SASP is 40.8 Wm�2 (20% of
the average observed LW#) and 47.9 Wm�2 at SBSP (22% of the
average). MBE is 12.4 Wm�2 at SASP and 21.2 Wm�2 at SBSP,
which are both approximately 10% of the average LW# at the
respective gage. Cloud cover increases the simulated LW# up to
17% (Eq. (8)) with an average increase of 11%. Sicart et al. (2006)
found in the Wolf Creek Research Basin in Canada that an increase
of up to 50% in LW# could be attributed to clouds. However, those
large increases were rare and average increases in LW# due to
clouds was close to 16%, slightly higher than the 11% average
increase found in this study. These results indicate that the approx-
imate increase in LW# due to clouds may be accounted for in the
TVA (1972) method, but the peak increases in LW# due to clouds
may be absent and warrants further investigation. Bohn et al.
(2013) indicated that other methods might estimate LW# better
than the TVA (1972) method. Thus, a more complicated method
by Crawford and Duchon (1999) was tested. The Crawford and
Duchon (1999) method determines a cloud fraction term by calcu-
lating the ratio of measured solar irradiance to the clear-sky irradi-
ance. In the absence of such data, Bohn et al. (2013) used the ratio
of calculated solar irradiance to the clear-sky irradiance, which is
the same as Kc as defined earlier. Using the cloud fraction term,



Fig. 5. Comparison of observed (dashed) and RTI simulated (solid) SW# and LW# at SBSP (top) and SASP (bottom) over a typical 7 day period in April 2011.
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LW# was then calculated based on Ta and ea. When this method is
implemented, the results at both SASP and SBSP have an increase
in MBE of approximately 2.5 Wm�2 and a decrease in RMSE of
approximately 0.3 Wm�2 when compared to the TVA (1972)
method.

Fig. 6 shows the SWE values from the TI and RTI models at SBSP
and SASP, and it compares them to the SWE observations and
Fig. 6. TI and RTI simulated SWE at SBSP (top) and SASP (bottom) compared to obs
simulated values from the SNTHERM model, which were produced
by Landry et al. (2014). Neither the TI or RTI models were cali-
brated to these SWE observations (they were calibrated to SCA),
and the SNTHERM parameters were set to values commonly found
in literature (Landry et al., 2014). At SBSP, the TI and RTI results
tend to be similar to the SNTHERM results. However, at SASP, both
models are more accurate than SNTHERM. At SBSP, RTI slightly
ervation data and published SNTHERM simulation results (Landry et al., 2014).



Table 2
Statistics for TI and RTI SWE values at SASP and SBSP during the calibration period (1 July 2006–30 September 2009), validation period (1 October 2009–30 September 2012), and
overall (1 July 2006–30 September 2012). Values closer to zero indicate better fit.

Calibration Validation Overall

RMSE (cm) MBE (cm) RMSE (cm) MBE (cm) RMSE (cm) MBE (cm)

TI SBSP 26.6 24.0 14.0 10.5 21.1 17.4
RTI SBSP 26.6 23.8 13.7 10.0 21.1 17.0
TI SASP 8.8 �7.7 9.4 �5.7 9.1 �6.5
RTI SASP 14.5 �2.4 13.0 3.1 13.6 0.9
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outperforms TI (i.e. its RMSE and MBE are the same or closer to
zero, Table 2) during both the calibration and validation periods.
At SASP, the TI model has smaller RMSE values while the RTI model
has smaller (magnitude) MBE values during the calibration and
validation periods.

In general, the TI and RTI results track closely together at both
locations. The TI model tends to slightly underestimate the SWE
at SASP (negative MBE values in Table 2) and overestimate the
SWE at SBSP (positive MBE values in Table 2), while the RTI model
tends to overestimate the SWE at both SASP and SBSP (positive
overall MBE values in Table 2). Wind scour is estimated to reduce
the maximum SWE by up to 40% at SBSP (Landry et al., 2014).
Because the models do not represent this process, it might explain
why they tend to overestimate SWE at SBSP. The SASP site is more
sheltered, and the modeled results are closer to the observed SWE.

The importance of cloud cover in the RTI model was evaluated
by comparing the behavior of the TI and RTI models for the periods
with and without cloud cover data. For the five water years with
cloud cover data, the peak SWE for the RTI model is on average
17.8% higher at SASP and 1.8% lower at SBSP when compared to
the TI model. For the period with no cloud data (08 April 2009
through 11 November 2009), the peak SWE from the RTI model
is approximately 1.2% higher at SASP and 2.1% lower at SBSP than
the TI model. The simulations were repeated using the assumption
that the sky was clear during the period without data. In that case,
the RTI model is approximately 1.2% higher at SASP and 6.3% lower
at SBSP. These differences in peak SWE (especially at SBSP) indicate
that the assumption made for missing cloud cover data has signif-
icant impacts on the simulation of SWE in the RTI model. Cloud
cover also appears to impact the simulated snowpack duration in
the RTI model. At SBSP, the TI and RTI models completely melt
the snowpack within a week of each other in every WY, with WY
2009 andWY 2012 being the only two years where snow depletion
occurred in the RTI model prior to the TI model. At SASP, the RTI
model tends to completely melt the snowpack later than the TI
model (between thirteen and sixteen days). The exception is WY
2009 when cloud data were not completely available and the RTI
and TI model completely melt the snowpack on the same day at
SASP. This result also suggests that cloud cover impacts the simu-
lation of SWE in the RTI model.

The impact of dust on SWE is not accounted for in either the RTI
or TI model. Skiles et al. (2015) showed an increasing trend in the
number of dust events (occurring between March 1st and snow
depletion for each calendar year) from 2006 through 2012 at SASP.
However, the number of dust events is not a predictor of the
amount of dust deposited within a basin (Skiles et al., 2015). Dust
concentration (measured just prior to snow depletion) was rela-
tively similar between the calibration and validation periods (rang-
ing from 0.8 to 1.3 mg g�1) for all years except 2009 and 2010,
which both experienced greater than 4.0 mg g�1 of dust concentra-
tion. Of the years analyzed, the observed recession of the SWE for
WY 2010 at SASP is quicker than that of the TI or RTI simulations
(note that SWE measurements during snow recession are lacking
in WY 2009). The rapid recession in observed SWE when compared
to simulated SWE is likely caused by the high concentration of dust
during WY 2010. Future work could include the impact of dust in
the RTI model by modifying the snow albedo (a).

4.2. Locations varying in aspect and vegetation cover

Simulations of SWE at SBSP and SASP yielded very similar
results between the TI and RTI models. However, these sites are flat
with relatively low vegetation cover. Greater differences in SWE
are expected when the topography and vegetation cover play lar-
ger roles. To evaluate the sensitivity of the models to these factors,
the SWE values from the TI and RTI models were compared for four
locations within the basin (locations shown in Fig. 3). The four sites
were chosen to have similar elevations (between 3493.1 and
3511.4 m), but they have strong differences in their topographic
orientation (north-facing vs. south-facing) and their vegetation
cover (evergreen forest vs. grassland or bare ground). No further
calibration or additional simulations were performed for this anal-
ysis; it simply considers other locations in the watershed.

The SWE simulated by the TI model is nearly identical at the
four locations (maximum difference of 1.8 cm) because this model
does not account for topographic aspect and vegetation cover and
the elevation differences between the sites are small. For clarity, a
single representative result from the TI model is shown in Fig. 7. In
contrast, the SWE simulated by the RTI model varies for the four
locations. Both north-facing locations typically exhibit higher val-
ues of SWE than the TI model throughout the entire simulation
due to a reduction in SW# caused by Ks. The same factor causes
the south-facing locations to exhibit lower values of SWE than
the TI model. These results demonstrate that the topographic ori-
entation plays a strong role in determining the SWE pattern for
mountainous terrain in the RTI model, while this factor is
neglected in the TI model.

For both the north-facing and south-facing slopes the forested
locations consistently have lower SWE values than the non-
forested locations. Differences in SWE due to the forest canopy
were caused solely by an increase in LW# due to the canopy (recall
that Tcanopy ¼ Ta and the emissivity between the canopy and the
snow surface, ec , is equal to unity for forested areas). The values
of Kv were set or calibrated to 1.0 (except for a small portion of
deciduous forest), causing no decrease in SW# due to the canopy
cover. No data are available in SBB to determine if snow persists
longer in the open or forested areas, but Lundquist et al. (2013)
found that snow typically persists longer under the canopy than
in the open areas for areas with colder winters. If the Kv values
were set lower than unity, SW# would be reduced under the
canopy and snow would persist longer at such locations.

4.3. Snow cover area

Figs. 8 and 9 show the LandSat-derived SCA maps along with
the SWE maps produced by the TI and RTI models. The 6 images
in Fig. 8 show the maps from the calibration period, and the
remaining 6 images in Fig. 9 show the maps from the validation



Fig. 7. SWE simulation at four locations within SBB that have similar elevations (between 3493.1 and 3511.4 m), but vary in aspect and vegetation cover. The TI model (black)
simulates all four sites nearly identically, but the RTI model (colored) simulates each site differently. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Basin-wide observed SCA (left, from LandSat 5 imagery), and TI (center) and RTI (right) simulated SWE from the calibration period (1 July 2006–30 September 2009).
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period. The spatial variation in the TI SWE map is only due to vari-
ations in elevation, which is used to derive the local Ta. In contrast,
the spatial variation in the RTI SWE map depends on elevation,
topographic-orientation, and (to a small extent) vegetation cover
because they affect Trad. All of the images in Figs. 8 and 9 show that
there is a clear distinction in how the TI and RTI models simulate
spatial patterns of SWE. Qualitatively, the RTI model typically out-
performs the TI model in reproducing SCA (e.g., 20 June 2007 and
21 October 2011). Skiles et al. (2015) found that dust deposition
at SASP advanced melt by 24–49 days. Including dust in the calcu-



Fig. 9. Basin-wide observed SCA (left, from LandSat 5 imagery), and TI (center) and RTI (right) simulated SWE from the validation period (1 October 2009–30 September
2012).
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lation of a in the RTI model could potentially improve SCA
simulations at SBB during the ablation period (note overestimation
of SCA for 08 May 2009 and 27 May 2010 and recall that both years
had high dust concentration (Skiles et al., 2015)).

For the TI simulation, the average error (Eq. (20)) is 0.44 during
the calibration period, 0.40 during the validation period, and 0.42
overall. For the RTI simulation, the average error is 0.29 during
the calibration period, 0.36 during the validation period, and 0.33
overall. Of the 12 observation dates, the TI and RTI models pro-
duced the same error for 2 images (23 October 2006 and 24
September 2007, both in calibration period), the RTI model had
higher error for 1 image (01 July 2011, in validation period), and
the RTI model had a lower error for 9 images (4 in calibration per-
iod, 5 in validation period). The simulations of SCA were also eval-
uated using the F score as described in Rittger et al. (2013). The F
scores tend to be better for the RTI patterns (average of 0.86) than
the TI patterns (average of 0.80), and the F scores also suggest that
the RTI SCA is superior for 9 of the 12 observation dates.

Fig. 10 analyzes the composition of the error in SCA for each
image. Specifically, it shows the percent of the basin where: (1)
snow was observed and simulated (accurately simulated snow),
(2) snow was not observed and not simulated (accurately simu-
lated no snow), (3) snow was observed but was not simulated
(under-simulated snow), and (4) snow was not observed but was
simulated (over-simulated snow). During the calibration period,
the model was calibrated to minimize the contributions of (3)
and (4); cases (1) and (2) represent the accuracy of the models.
The average SCA accuracy modestly improves from 75.5% for the
TI model to 79.9% for the RTI model with a maximum improvement
of 19.7% on 28 October 2008 followed by a 14.0% improvement on
8 November 2006. Both the TI and RTI models have higher average
accuracies for the calibration period (76.6% and 82.9%, respec-
tively) than the validation period (74.4% and 76.9%, respectively).
The improved performance suggests that the RTI model captures
some elements of the snowpack evolution that are not included
in the TI model. The improvement may be small in part because
the RTI introduces much more local variation in the SWE pattern
than the TI model.

4.4. Basin-wide SWE volume

Basin-wide SWE is often calculated to help plan water alloca-
tions and reservoir management. Although no basin-wide SWE
observations are available, it is useful to see whether the TI and
RTI model produce substantial differences in this quantity. The
total volume of SWE (m3) as a function of time during the simula-
tions is shown in Fig. 11 for both the TI and RTI models. During the
accumulation periods, both models estimate very similar volumes



Fig. 10. Composition of the SCA from the TI model (top) and RTI model (bottom) as
percentages of total basin area. The heights of the black lines indicate the accuracy
of the SCA on each date.
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of SWE. This similarity continues until just prior to the peak in each
WY. As melting begins, the TI estimates are typically higher than
the RTI estimates. The differences are especially large during the
melting period of WY 2009 when the cloud cover was estimated.
The difference in the annual peak SWE varied from 53,831 m3

(2.1% difference) in WY 2008 to a 260,168 m3 (12.9%) difference
in WY 2007. The largest percentage difference occurred in WY
2012 with the RTI model simulating 13.9% (209,268 m3) less SWE
than TI. On average, the annual peak SWE was 187,579 m3 greater
for the TI model than the RTI model (an 8.5% difference). The snow-
pack completely disappeared in every WY for both the TI and RTI
Fig. 11. Basin-wide volume of SWE (m3) simulated by the TI model (dashed) and the RTI
in the RTI model from 08 April 2009 through 11 November 2009 due to the lack of clou
models. Snow in the RTI model disappeared between 8 days (WY
2012) and 37 days (WY 2010) after snow had disappeared in the
TI model. This delay (an average of 21.5 days) was caused in part
by snow remaining in a few high-elevation topographically-
shaded areas within the RTI model.
5. Conclusions

This study aimed to better account for the energy that is avail-
able to heat or melt snowpack in the GSSHA snowpack routine. The
existing TI model uses air temperature as a proxy for the available
energy because measurements for this variable are widely avail-
able. However, air temperature is most directly related to the long-
wave radiation from the air (Ohmura, 2001), which is only one
contributor in the energy balance. We proposed to replace the air
temperature with an alternative proxy, which is calculated from
a simple radiation balance. This new RTI model retains the general
structure of the TI approach and requires only one additional type
of data (cloud cover). The RTI model also includes an estimate of
the absorbed shortwave radiation, which is often the dominant
source of energy for snow melt (Sicart et al., 2006; DeWalle and
Rango, 2008), and it includes the effects of topographic orientation
and vegetation cover. Because shortwave radiation is directly con-
sidered in the RTI model, two calibrated melt factor terms in the TI
model can be replaced with a single melt factor term. To account
for vegetation effects, the RTI model does require two inputs
related to vegetation: the vegetation transmission coefficient and
the leaf area index. However, both of these inputs are currently
used in the evapotranspiration routine of GSSHA. Because the RTI
model retains the general structure of the TI model, it can easily
be implemented into existing distributed models that use the TI
model.

In this study, the RTI model was applied to the SBB and com-
pared to local observations of SWE and LandSat-derived maps of
SCA. Its results were also compared to the TI model and, at the local
scale, to those of the SNTHERM model. The primary conclusions of
the paper are as follows:

(1) When the TI and RTI models are calibrated to basin-wide
SCA and then applied to the SBSP and SASP sites, they pro-
duce similar performance. For example, when compared to
observed SWE data, the RTI model has a lower MBE at both
sites than the TI model, but a larger RMSE at SASP. Both
models perform better at SASP than SBSP, which has known
effects from wind scour that are not accounted for in the
model (solid) during the entire study period. Cloud cover was assumed to be absent
d cover data.
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models. These sites both have little slope and low vegetation
cover, so the elements that distinguish the TI and RTI models
have little effect. Both methods outperform published
results from an uncalibrated SNTHERMmodel for these sites
and produce reasonable estimates of the observed SWE.
Thus, at least for this basin, the RTI model appears to have
similar performance as the TI model for flat and thinly veg-
etated locations.

(2) The RTI model produces substantial variations in SWE
depending on the topographic orientation and vegetation
cover whereas the TI model does not. The RTI model includes
the effect of the topographic orientation in its calculation of
the absorbed shortwave radiation and thus its proxy tem-
perature. North-facing slopes tend to have more SWE than
south-facing slopes. Similarly, when forested and non-
forested locations are compared, the non-forested locations
have more SWE than the forested locations due to enhanced
longwave radiation from the forest cover. The differences
between the forested and non-forested locations are
expected to be specific to this watershed, and the RTI model
likely requires additional data to ensure accurate represen-
tation of these differences. In contrast, the TI model infers
its proxy temperature using only elevation and thus exhibits
no variations based on topographic orientation or vegetation
cover.

(3) The basin-wide SCA area maps from the RTI model are typ-
ically more accurate than those from the TI model at SBB,
showing improved accuracy in 9 of the 12 images analyzed,
similar accuracy in 2 images, and reducing the error from
0.42 to 0.33. The F score (Rittger et al., 2013) modestly
improved from 0.8 to 0.86 when using the RTI model. The
RTI model’s dependence on topographic orientation and veg-
etation cover produce more local variability in SWE than the
TI model. These local variations resemble the variability in
SCA maps that are derived from LandSat images. In contrast,
the TI model produces very smooth SWE maps that depend
only on elevation and often do not resemble the SCA maps
from LandSat.

(4) The differences between the TI and RTI models produce sub-
stantial differences in the overall volume of SWE in the study
basin. The peak basin-wide SWE value in a given water year
is 2.1% to 13.9% smaller for the RTI model than the TI model,
which could impact water allocation and reservoir operation
plans. Although observations are not available to determine
which estimate is more accurate, this result suggests that
the differences in the TI and RTI models are significant and
deserve further testing.

(5) Cloud cover can have a significant effect on the estimation of
both shortwave radiation and SWE within the RTI model.
During the WY 2009 melting period, cloud cover data were
unavailable and therefore estimated hourly by randomly
sampling the values from the same day and hour of the other
years. This assumption resulted in expedited melting of the
snowpack in the RTI model compared to the TI model. It is
unclear whether the RTI model can be effectively deployed
in basins without observed cloud cover data (perhaps by
manipulating calibration parameters such as the melt factor,
by calibrating the cloud cover fraction, or using remotely-
sensed cloud cover products). Without cloud cover data,
the RTI model still accounts for the effects of topography
and vegetation on shortwave radiation and SWE, but its
performance is likely diminished.

Additional testing is needed to better characterize the
differences between the TI and RTI models. The present study
revealed that the most considerable differences occur in locations
with substantial topographic and vegetation effects. Future
research should focus on comparing to observations in such loca-
tions to determine the relative reliability of the two methods. In
addition, future testing could determine the magnitude to topo-
graphic and vegetation variations that are needed to produce sub-
stantial differences between the two methods. Additional testing
should also consider the role of cloud cover in more detail. Perfor-
mance of the RTI model might differ for areas with cloudier cli-
mates, such as the Pacific Northwest. Similarly, the performance
of the RTI model in basins dominated by turbulent fluxes (e.g.,
warm temperate mountain climates (Sade et al., 2014)) may be
diminished and should be studied. The RTI model also neglects
the effects of dust, wind scour, and emission of longwave radiation
from local topography; all of which may cause errors in the simu-
lation of SWE and SCA. Dust could be included through a more
detailed calculation of snow albedo. Future testing should also
examine the performance of the RTI model at predicting the overall
volume of SWE in the watershed as well as the timing and
magnitude of snowmelt discharges in the spring.
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